Suppression of Sr surface segregation in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ): a first principles study.
نویسندگان
چکیده
Based on systematic first principles calculations, we investigate Sr surface segregation (SSS) in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) (LSCF) (a typical perovskite ABO(3) compound), a bottleneck causing efficiency degradation of solid oxide fuel cells. We identify two basic thermodynamic driving forces for SSS and suggest two possible ways to suppress SSS: applying compressive strain and reducing surface charge. We show that compressive strain can be applied through doping of larger elements and surface coating; surface charge can be reduced through doping of higher-valence elements in the Sr- and B-site or lower-valence elements in the La-site and introducing surface A-site vacancies. The net effect of oxygen vacancy is to enhance SSS because its effect of increasing surface charge overrides its effect of inducing compressive strain, while Co substitution of Fe always enhances SSS because it induces tensile strain as well as increases surface charge. Our results explain the recent experimental observation of SSS suppression in LSCF by a La(1-x)Sr(x)MnO(3-δ) (LSM) coating.
منابع مشابه
Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملOxygen surface exchange kinetics of SrTi(1-x)Fe(x)O(3-δ) mixed conducting oxides.
The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temper...
متن کاملSynthesis of La1-xSrxAlO3 Perovskites by Reverse Strike Co-Precipitation Method and Its Soot Oxidation Activity
La1-xSrxAlO3 (x=0 to 0.4) perovskite materials were synthesized by the reverse strike co-precipitation method and their soot oxidation activity was evaluated. All the catalysts synthesized were characterized using XRD, BET specific surface area, FESEM and XPS techniques. As analyzed by XRD, La1-xSrxAlO3 <...
متن کاملEffect of Sr substitution on structural, redox and catalytic properties of nano-particles La1-xSrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) as a catalyst for CO oxidation
Structural features of La(1-x)SrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nano-particles were investigated using X-ray powder diffraction and FT-IR spectroscopy. The characterization of compounds by X-ray powder diffraction and using Fullprof program show a cubic structure (Pm3m space group) for x = 0.0 and a rhombohedra structure (R-3c space group) for the Sr substituted La(1-x)SrxM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2013